(1+x+x^2+x^3)(1-x)=(1+x+x^2+x^3)1-x(1+x+x^2+x^3)

Simple and best practice solution for (1+x+x^2+x^3)(1-x)=(1+x+x^2+x^3)1-x(1+x+x^2+x^3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1+x+x^2+x^3)(1-x)=(1+x+x^2+x^3)1-x(1+x+x^2+x^3) equation:


Simplifying
(1 + x + x2 + x3)(1 + -1x) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)

Multiply (1 + x + x2 + x3) * (1 + -1x)
(1(1 + -1x) + x(1 + -1x) + x2(1 + -1x) + x3(1 + -1x)) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
((1 * 1 + -1x * 1) + x(1 + -1x) + x2(1 + -1x) + x3(1 + -1x)) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
((1 + -1x) + x(1 + -1x) + x2(1 + -1x) + x3(1 + -1x)) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
(1 + -1x + (1 * x + -1x * x) + x2(1 + -1x) + x3(1 + -1x)) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
(1 + -1x + (1x + -1x2) + x2(1 + -1x) + x3(1 + -1x)) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
(1 + -1x + 1x + -1x2 + (1 * x2 + -1x * x2) + x3(1 + -1x)) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
(1 + -1x + 1x + -1x2 + (1x2 + -1x3) + x3(1 + -1x)) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
(1 + -1x + 1x + -1x2 + 1x2 + -1x3 + (1 * x3 + -1x * x3)) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
(1 + -1x + 1x + -1x2 + 1x2 + -1x3 + (1x3 + -1x4)) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)

Combine like terms: -1x + 1x = 0
(1 + 0 + -1x2 + 1x2 + -1x3 + 1x3 + -1x4) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
(1 + -1x2 + 1x2 + -1x3 + 1x3 + -1x4) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)

Combine like terms: -1x2 + 1x2 = 0
(1 + 0 + -1x3 + 1x3 + -1x4) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
(1 + -1x3 + 1x3 + -1x4) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)

Combine like terms: -1x3 + 1x3 = 0
(1 + 0 + -1x4) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)
(1 + -1x4) = (1 + x + x2 + x3) * 1 + -1x(1 + x + x2 + x3)

Reorder the terms for easier multiplication:
1 + -1x4 = 1(1 + x + x2 + x3) + -1x(1 + x + x2 + x3)
1 + -1x4 = (1 * 1 + x * 1 + x2 * 1 + x3 * 1) + -1x(1 + x + x2 + x3)
1 + -1x4 = (1 + 1x + 1x2 + 1x3) + -1x(1 + x + x2 + x3)
1 + -1x4 = 1 + 1x + 1x2 + 1x3 + (1 * -1x + x * -1x + x2 * -1x + x3 * -1x)
1 + -1x4 = 1 + 1x + 1x2 + 1x3 + (-1x + -1x2 + -1x3 + -1x4)

Reorder the terms:
1 + -1x4 = 1 + 1x + -1x + 1x2 + -1x2 + 1x3 + -1x3 + -1x4

Combine like terms: 1x + -1x = 0
1 + -1x4 = 1 + 0 + 1x2 + -1x2 + 1x3 + -1x3 + -1x4
1 + -1x4 = 1 + 1x2 + -1x2 + 1x3 + -1x3 + -1x4

Combine like terms: 1x2 + -1x2 = 0
1 + -1x4 = 1 + 0 + 1x3 + -1x3 + -1x4
1 + -1x4 = 1 + 1x3 + -1x3 + -1x4

Combine like terms: 1x3 + -1x3 = 0
1 + -1x4 = 1 + 0 + -1x4
1 + -1x4 = 1 + -1x4

Add '-1' to each side of the equation.
1 + -1 + -1x4 = 1 + -1 + -1x4

Combine like terms: 1 + -1 = 0
0 + -1x4 = 1 + -1 + -1x4
-1x4 = 1 + -1 + -1x4

Combine like terms: 1 + -1 = 0
-1x4 = 0 + -1x4
-1x4 = -1x4

Add 'x4' to each side of the equation.
-1x4 + x4 = -1x4 + x4

Combine like terms: -1x4 + x4 = 0
0 = -1x4 + x4

Combine like terms: -1x4 + x4 = 0
0 = 0

Solving
0 = 0

Couldn't find a variable to solve for.

This equation is an identity, all real numbers are solutions.

See similar equations:

| -4(4p+4)-38=3(3p+7) | | x^2-18=4 | | 6(c-6)=7(c-7) | | -55+4y+6=2(4y-4)-5 | | x^2+3*x-4=0 | | 3(x+7)=11x-11 | | -11=k-7-4 | | 3(c-5)+7=3+c-11 | | x^2-3=5x+21 | | 1-6n-1=6 | | (4-x)(2+x)=0 | | f(s)=15-s+4s^2-15s^4 | | 4y-7=13y+29 | | 3(6x-1)-3(8x-8)=8x+8 | | 3x-4=5x-12 | | 25(6-2s)=18s+14 | | (2x^3+2x)*(2x-1)+(-2)=2x^4-x^3+2x^2-3 | | 6x-5=24x+7 | | -7u-20=5(u+8) | | (2x^3+2x)*(2x-1)+(-2)=0 | | 8y+8=7y-9 | | -3(2r-13)=5r-27 | | 16-7x=41+2x | | 3(q+1)=4q | | -16=1+8a-1 | | 7x=6x | | 8w-15=3w-10 | | 3x+6+2X+4=125 | | 2x+6+2x+4=125 | | 5-8=k(-1+2) | | 6(7-b)=3b-3 | | 161=5x+4(-6x-12) |

Equations solver categories